J.R.A.H.S. TRIAL HSC EXAMINATION 3/4 UNIT MATHEMATICS 1994

QUESTION 1

- (a) Solve $2x^2 > 2 3x$.
- (b) Differentiate $\frac{1}{4 x^2}$

 $\frac{\pi}{4}$

- (c) Find the exact value of $\int_{0}^{\infty} \cos x \sin^2 x \, dx$.
- (d) A committee of 5 is to be chosen from 6 boys and 3 girls. Find the probability that the committee contains a particular boy X and a particular girl Y.
- (e) Find the acute angle between the lines y = 3x 2 and x 2y = 5

Question 2 (START A NEW PAGE)

- (a) (i) Draw a sketch of y=2sin⁻¹x. State the domain and range.
 - (ii) A region R is bounded by the curve $y=2\sin^{-1}x$, the x-axis and the line x=1.

Find the exact area of the region R.

(b) Find $\int_{0}^{x} (x^3 + 1)^4 dx$ using the substitution $u = x^3 + 1$

QUESTION 3 (START A NEW PAGE)

- (a) A point moves along the curve $y = \ln x^2$. The x co-ordinate of the point changes at the rate of 4 units per second. At what rate is the y co-ordinate increasing when x = 3?
- (b) Find the term independent of x in $(x \frac{1}{x})^6$.
- (c) When A and B play chess, the probability of either winning a game is always \(\frac{1}{4}\) and the probability of the game being drawn is always \(\frac{1}{2}\). Find the probability of A winning at least four games out of five. (Answer correct to four decimal places)
- (d) Find the general solution to the equation $\tan \theta = \sin 2\theta$

QUESTION 4 (START A NEW PAGE)

- (a) A,B,C are three points on a circle,centre O. The tangent at A meets CB produced at T. X is the mid point of BC. Prove that:-
 - (i) AOXT is a cyclic quadrilateral
 - (ii) $\angle AOT = \angle AXT$.

(b)
$$S_n = a + ar + ar^2 + \dots ar^{n-1}$$
.

- (i) Using mathematical induction or otherwise, prove that $S_n = \frac{a(1-r^n)}{1-r}$
- (ii) Write down an expression for the limiting sum of a G.P.
- (iii) State the values of r for which it exists.
- (iv) If θ is not a multiple of $\frac{\pi}{2}$ and if p and q are given as sums of the following infinite geometric series:-

$$p = 1 + \cos^2\theta + \cos^4\theta + \dots,$$

$$q = 1 + \sin^2\theta + \sin^4\theta + \dots,$$
prove that $p + q = pq$.

QUESTION 5(START A NEW PAGE)

- (a) A projectile travels in a parabolic path. The angle of projection is 60° and the velocity at which it is projected is 500 m/sec.
 - (i) Derive the equations of motion for the projectile in flight. (Air resistance is to be neglected and the acceleration due to gravity is to be taken as 10ms⁻²)
 - (ii) Find the range
 - (iii) Find the greatest height reached.
- (b) P $(2ap,ap^2)$ and Q $(2aq,aq^2)$ are two points on the parabola $x^2 = 4ay$.
 - (i) Write down the equations of the normals at P and Q.
 - (ii) Find the co-ordinates of R, the point of intersection of the normals, in terms of p and q.
 - (iii) If pq = -2 find the cartesian equation of the locus of R.

JRANI SU

QUESTION 6 (START A NEW PAGE)

- (a) A particle moving with simple harmonic motion makes 100 complete oscillations per minute. Its maximum speed is 10m per sec.Find:-
 - (i) the exact period of the motion
 - (ii) the amplitude of the motion.
 - (iii) the time taken to move from the centre of the oscillation to a point which is distant two-thirds of the amplitude from the centre (Give answer in secs to two significant figures)
- (b) (i) Sketch the curve $y = 2\cos x 1$ for $-\pi \le x \le \pi$. Mark clearly where the graph crosses each axis.
 - (ii) Find the volume generated by the rotation through a complete revolution about the x-axis of the region between the x-axis and that part of the curve $y = 2\cos x 1$ for which $|x| \le \pi$ and $y \ge 0$.

Question 7 (START A NEW PAGE)

- (a) The constant acceleration of a train is 1 metre per sec per sec and its constant retardation is 3 metres per sec per sec.
 - i) Sketch a velocity-time graph assuming the train starts from rest accelerates in a straight line and immediately decelerates in a straight line until it is again at rest.
 - ii) Find the time taken for a journey of 1Km given the journey described in (i)
- (b) The integers a,b,d are connected by the relation a = b + d.
 - (i) Use the binomial expansion of $(b + d)^n$, where n is a positive integer, to show that $a^n b^{n-1}$ (b + nd) is divisible by d^2 .
 - (ii) In the result of part (i) replace b by a − d. Hence show that if a is the first term,d the common difference and l the nth term of an arithmetic progression, then aⁿ − l (a −d)ⁿ⁻¹ is divisible by d².
 - (iii) Deduce that $5^{682} 2^{692}$ is divisible by 9.

THIS IS THE END OF THE PAPER